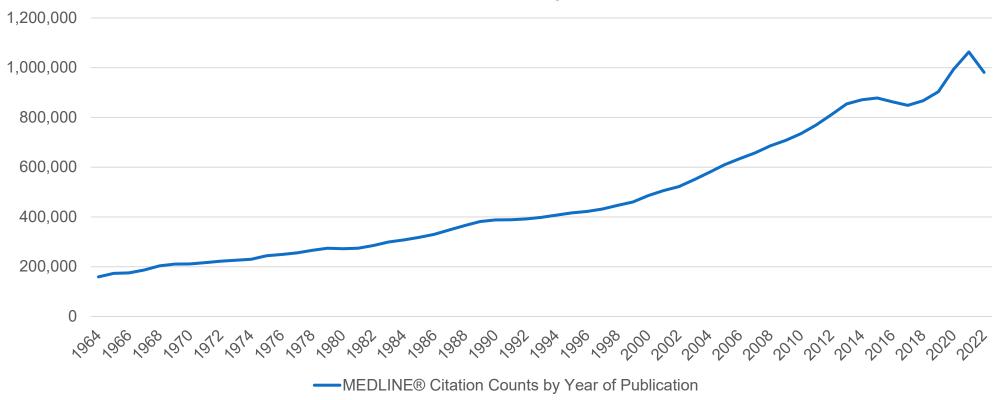
Chem-FINESE: Validating Fine-Grained Few-shot Entity Extraction through Text Reconstruction

Qingyun Wang, Zixuan Zhang, Hongxiang Li, Xuan Liu, Jiawei Han, Huimin Zhao, Heng Ji

University of Illinois at Urbana-Champaign



BLENDER | Cross-source Information Extraction

Information Overload

- Millions of scientific papers are published every year
- Human's reading ability keeps almost the same across years

MEDLINE® Citation Counts by Year of Publication

Challenges in Fine-grained Chemical Entity Extractions

• Few benchmarks are publicly available

	Datasets
	9,274 machine learning datasets
	Share your dataset with the ML community!
	5 dataset results for chemical AND Named Entity Recognition (NER) \times
chemical Image: Image	Q BC4CHEMD (BioCreative IV Chemical compound and drug name recognition) Introduced by Krallinger et al. in The CHEMDNER corpus of chemicals and drugs and its annotation principles BC4CHEMD is a collection of 10,000 PubMed abstracts that contain a total of 4 PAPERS + 3 BENCHMARKS
Filter by Modality Texts Biomedical	 BC5CDR (BioCreative V CDR corpus) BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818 disease and 3116 chemical-disease interactions. 170 PAPERS + 7 BENCHMARKS
3D 3d meshes 6D Actions	0 BC7 NLM-Chem (BioCreative VII NLM-Chem) 0 Full-text chemical identification and indexing in PubMed articles. Identifying named entities is an important building block for many complex knowledge extraction tasks. Chemical entities 0 2 PAPERS + 3 BENCHMARKS
Filter by Task (clear)	BioRED BioRED is a first-of-its-kind biomedical relation extraction dataset with multiple entity types (e.g. gene/protein, disease, chemical) and relation pairs (e.g. gene–disease; chemical–chemi- 13 PAPERS • 3 BENCHMARKS
Named Entity Recognition (NER) Graph Classification Drug Discovery Relation Extraction	 JNLPBA JNLPBA From this search 2,000 abstracts were selected and hand annotated according to a small tax- onomy of 48 classes based on a chemical classification. 36 terminal classes were used to anno. 17 PAPERS + 3 BENCHMARKS

Challenges in Fine-grained Chemical Entity Extractions

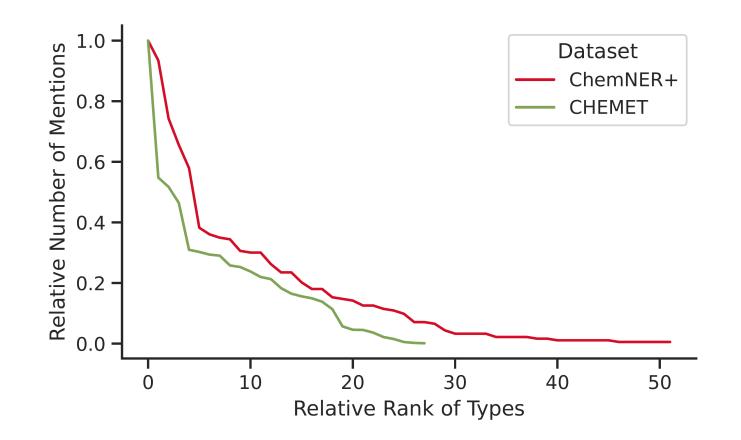
Missing mentions

• Scientific documents contain more entities per sentence compared the sentence in general domain (3.1 in ChemNER+ vs 1.5 in CONLL2003)

Input

Through application of ligand screening, we describe the first examples of Pdcatalyzed Suzuki–Miyaura reactions using aryl sulfamates at room temperature.

Ground Truth


ligand <Ligands>, Pd-catalyzed Suzuki-Miyaura reactions <Coupling reactions>, aryl sulfamates <Aromatic compounds>, room temperature <Thermodynamic properties>

InBoxBART Entity Extraction Results

ligand screening <Ligands>, Pd-catalyzed Suzuki-Miyaura reactions <Coupling reactions>, aryl sulfamates <Catalysts> [Missing: room temperature <Thermodynamic properties>]

Challenges in Fine-grained Chemical Entity Extractions

- Incorrect long-tail predictions
 - Long-tail problems are more prevalent in scientific domain compared to general domain

Goal of Information Extraction

- If the model extracts knowledge precisely, readers should be able to reconstruct the original sentence using the extraction results precisely and faithfully
- Self-validation module to reconstruct the original sentences based on entity extraction results

Input

Through application of ligand screening, we describe the first examples of Pdcatalyzed Suzuki–Miyaura reactions using aryl sulfamates at room temperature.

Ground Truth

ligand <Ligands>, Pd-catalyzed Suzuki-Miyaura reactions <Coupling reactions>, aryl sulfamates <Organic compounds>, room temperature <Thermodynamic properties>

Sentence Reconstructed from Ground Truth

Ligands play a crucial role in Pd-catalyzed Suzuki-Miyaura reactions, which are coupling reactions that enable the synthesis of diverse organic compounds such as aryl sulfamates at room temperature, exploiting their favorable thermodynamic properties.

InBoxBART Entity Extraction Results

ligand screening <Ligands>, Pd-catalyzed Suzuki-Miyaura reactions <Coupling reactions>, aryl sulfamates <Catalysts> [Missing: room temperature <Thermodynamic properties>]

Sentence Reconstructed from Name Tagging Results

Ligand screening is conducted to identify suitable ligands for Pd-catalyzed Suzuki-Miyaura reactions, which are coupling reactions known for their efficacy in the synthesis of aryl sulfamates, acting as catalysts in the process. [Missing: room temperature <Thermodynamic properties>]

Seq2Seq Entity Extraction

- Excessively copy from original sentence
- A new entity decoder contrastive loss to control the mention spans

Input

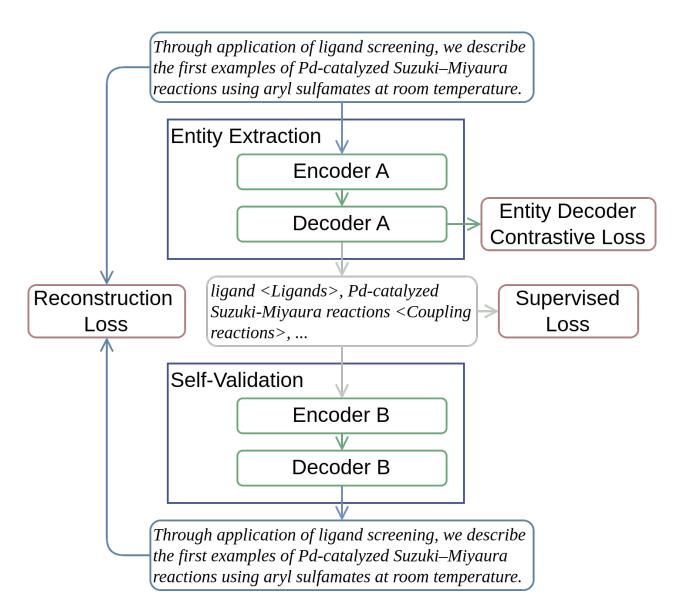
Through application of ligand screening, we describe the first examples of Pdcatalyzed Suzuki–Miyaura reactions using aryl sulfamates at room temperature.

Ground Truth

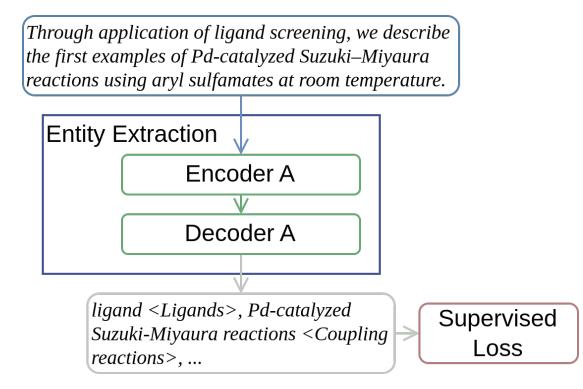
ligand <Ligands>, Pd-catalyzed Suzuki-Miyaura reactions <Coupling reactions>, aryl sulfamates <Organic compounds>, room temperature <Thermodynamic properties>

Sentence Reconstructed from Ground Truth

Ligands play a crucial role in Pd-catalyzed Suzuki-Miyaura reactions, which are coupling reactions that enable the synthesis of diverse organic compounds such as aryl sulfamates at room temperature, exploiting their favorable thermodynamic properties.

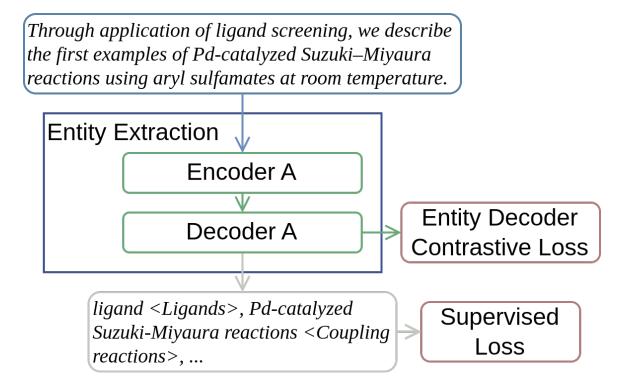

InBoxBART Entity Extraction Results

ligand screening <Ligands>, Pd-catalyzed Suzuki-Miyaura reactions <Coupling reactions>, aryl sulfamates <Catalysts> [Missing: room temperature <Thermodynamic properties>]

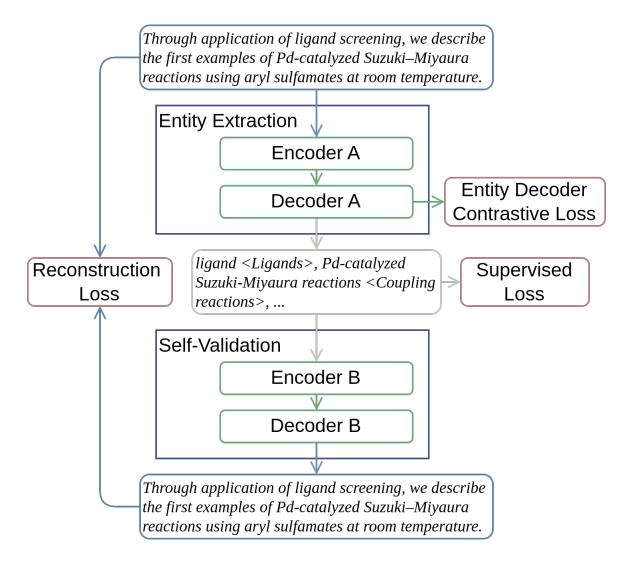

Sentence Reconstructed from Name Tagging Results

Ligand screening is conducted to identify suitable ligands for Pd-catalyzed Suzuki-Miyaura reactions, which are coupling reactions known for their efficacy in the synthesis of aryl sulfamates, acting as catalysts in the process. [Missing: room temperature <Thermodynamic properties>]

Overview



Entity Extraction Module


 Use the state-of-the-art coarse-grained chemical entity extractor InBoXBART as backbone to extract entities from source document

Contrastive Entity Decoding

 Construct decoder negatives by combining mentions with surrounding unrelated contexts

Self-validation Module

- Self-validation module takes in the entity extraction results and generates a reconstructed input sentence
- Use Gumbel-Softmax (GS) estimator to avoid the non-differentiable issue in explicit decoding

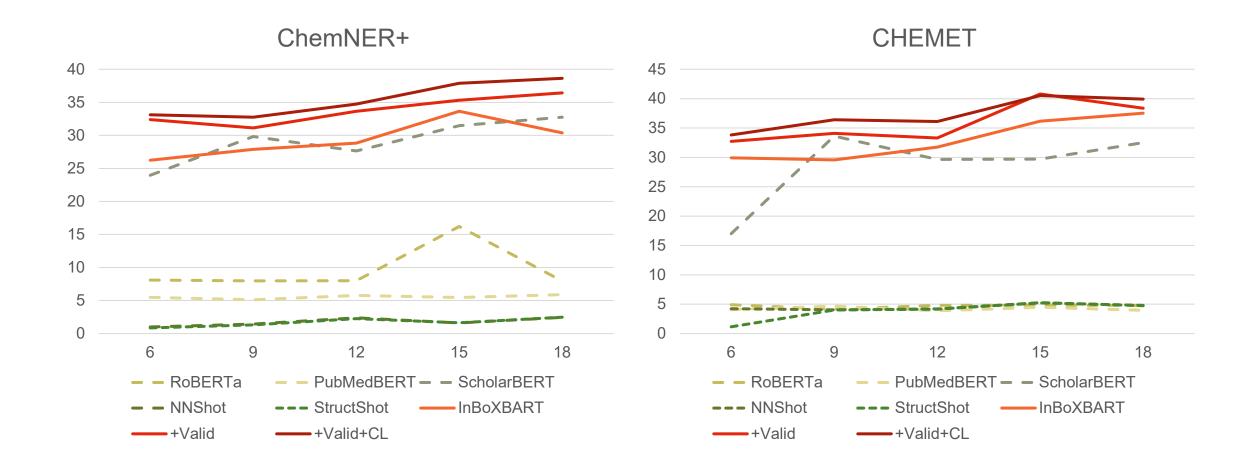
Benchmark Dataset

- ChemNER+
 - Based on available sentences from ChemNER (Wang et al., 2021)
 - Annotated by two Chemistry Ph.D. students
 - Covering 59 fine-grained chemistry types with 742 sentences
- CHEMET (Sun et al., 2021)
 - Consisting of 30 fine-grained organic chemical types

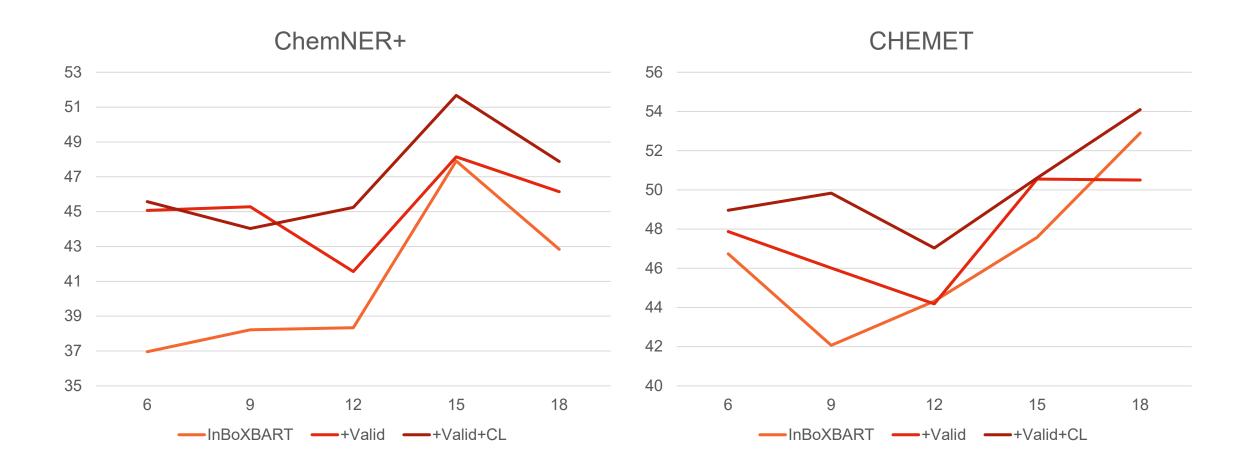
Dataset	Split	# Pair	Avg. Token	Avg. Entity
	Train	542	32.9	3.10
ChemNER+	Valid	100	39.9	4.57
	Test	100	39.4	4.61
	Train	6,561	37.8	1.57
CHEMET	Valid	520	31.6	2.15
	Test	663	36.6	1.95

Xuan Wang, Vivian Hu, Xiangchen Song, Shweta Garg, Jinfeng Xiao, and Jiawei Han. 2021a. ChemNER: Fine-grained chemistry named entity recognition with ontology-guided distant supervision. EMNLP 2021

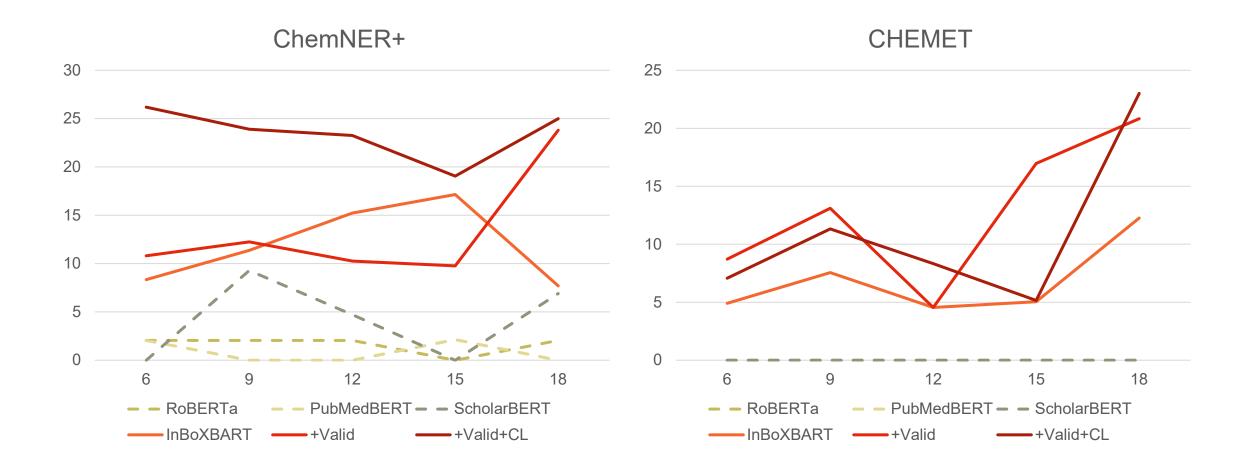
C. Sun, W. Li, J. Xiao, N. Parulian, C. Zhai, and H. Ji. 2021. Fine-grained chemical entity typing with multimodal knowledge representation. BIBM 2021


Few-shot Setup

- Set the number of maximum entity mentions *k* for the most frequent entity type
- Randomly sample other types and ensure that the distribution remains the same
- Choose the values 6, 9, 12, 15, 18 as the potential maximum entity mentions for k


Baselines

- State-of-the-art pretrained encoder-based models
- Few-shot baselines
- Ablation baselines
 - *Valid* is models with self-validation module
 - *CL* is models with contrastive entity decoding


k-shot Micro-F1 Results

k-shot Mention Micro-F1 Results

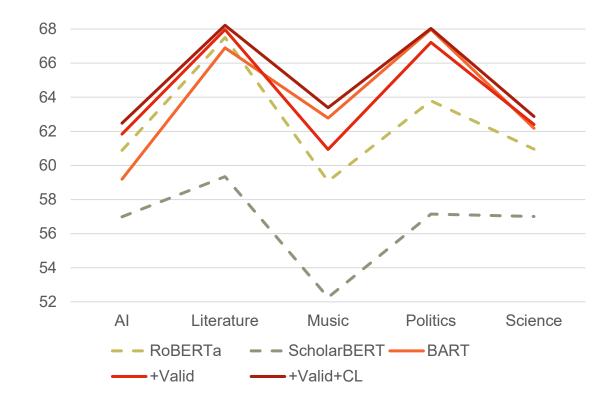
k-shot micro-F1 for Long-tail Entity Results

Qualitative Analysis

+ Valid + CL	Several <i>cyclophanes</i> _{Heterocyclic Compounds} , <i>polycycles</i> _{Biomolecules} , … have been synthesized by employing a combination of <i>Suzuki cross-coupling</i> _{Coupling reactions} and <i>metathesis</i> _{Chemical}
F	properties
Ground S	Several <i>cyclophanes _{Aromatic Compounds}</i> , <i>polycycles _{Organic polymers}</i> , … have been synthesized by employing a combination of <i>Suzuki cross-coupling _{Coupling reactions}</i> and <i>metathesis</i>

Qualitative Analysis

InBoxBART ...with the advantages of *asymmetric catalysis* (step and atom economy) in a rare example of an *enantioselective cross coupling of a racemic electrophile bearing an oxygen leaving group* _{Catalysis} ... the identification of a *highly enantioselective process*.


- + Valid ...with the advantages of asymmetric catalysis (step and atom economy) in a rare example of an *enantioselective cross coupling of a racemic electrophile bearing an oxygen leaving group* Organometallic compounds... the identification of a *highly enantioselective process*.
- + Valid + CL ...with the advantages of *asymmetric catalysis* _{Catalysis} (step and atom economy) in a rare example of an *enantioselective cross coupling* of a *racemic electrophile* bearing an *oxygen leaving group* _{Functional groups} ... the identification of a highly *enantioselective process* _{Chemical properties}.

Ground ...with the advantages of asymmetric catalysis _{Catalysis} (step and atom economy) in a rare example of an *enantioselective cross coupling* _{Coupling reactions} of a *racemic electrophile* Organic compounds bearing an *oxygen leaving group* _{Functional groups}... the identification of a *highly enantioselective process* _{Catalysis}.

Case Study

Domain	Train	Valid	Test	# Туре	Avg. Token	Avg. Entity
AI	100	350	430	14	31.5	4.42
Lit.	99	400	416	12	37.6	5.39
Music	100	380	465	13	41.4	7.05
Politics	200	541	654	9	43.5	6.46
Science	200	450	543	17	35.8	5.62

CrossNER

Conclusion

- Propose two few-shot chemical fine-grained entity extraction datasets, based on human-annotated ChemNER+ and CHEMET.
- Propose a new framework to address the mention coverage and long-tailed entity type problems in chemical fine-grained entity extraction tasks through a novel self-validation module and a new entity extractor decoder contrastive objective

Code and Data are public at: github.com/E agleW/Chem-FINESE

Thank you!

Code and Data are public at: <u>github.com/E</u> <u>agleW/Chem-</u> <u>FINESE</u>

BLENDER | Cross-source Information Extraction