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Measuring the Evolution of a Scientific Field through
Citation Frames

e Goal: Analyze how to frame citation, the functionality of this framing

e C(Classification Scheme: Uses, Motivation, Future,, Extends, Compare or
Contrast, Background

e Features: (i) Structural, (ii) Lexical, Morphological, and Grammatical, (iii)
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[1] Jurgens, D., Kumar, S., Hoover, R., McFarland, D., & Jurafsky, D. (2018). Measuring the Evolution of a Scientific Field through Citation
Frames. Transactions of the Association for Computational Linguistics, 6, 391-406.



Measuring the Evolution of a Scientific Field through
Citation Frames

Model: Random Forest classifier

Contribution: (i) New corpus of citation function, (ii) Venue influence the
citation significantly (iii) Vitation framing have a significant impact on future
citations (iv) NLP community has evolved by how authors frame their work
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[1] Jurgens, D., Kumar, S., Hoover, R., McFarland, D., & Jurafsky, D. (2018). Measuring the Evolution of a Scientific Field through Citation
Frames. Transactions of the Association for Computational Linguistics, 6, 391-406.



Unsupervised Neural Machine Translation with
Weight Sharing

Problem: Losing unique and internal characteristics of each language; Shared
encoder may be a factor limiting the potential translation performance

Contribution: Independent encoder for each language, Two different GAN,
Directional self attention

Local GAN: Constrain the source and target latent representations to have the
same distribution

Global GAN: Finetune the composition of encoder and decoder on different
language



Overview

e Dashlines represents weight sharing
constraint on last few layer of encoder
and first few layer of decoder

e D, is utilized to assess whether the
hidden representation of the encoder is
from the source or target language.

° Dg1 and Dgz are used to evaluate
whether the translated sentences are
realistic for each language respectively.

e Zrepresents the shared-latent space

[2] Yang, Z., Chen, W., Wang, F., & Xu, B. (2018). Unsupervised Neural Machine Translation with
Weight Sharing. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers)
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Details and analysis

Directional self-attention: Forward
and backward positional masks

Embedding reinforced encoder:
Combine the initial output sequence
with the fixed cross lingual
embeddings

Denoising auto-encoding: shuffle
input sentences

[2] Yang, Z., Chen, W., Wang, F., & Xu, B. (2018). Unsupervised Neural Machine Translation with
Weight Sharing. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers)

Best translation on one layer sharing

More distance between language
pair, more different characteristics

Shared layers are vital
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The Best of Both Worlds: Combining Recent
Advances in Neural Machine Translation

Goal: ldentify key modeling and training techniques; Devise new hybrid
architectures to combine strengths

RNMT: Pros: Sequential; Cons: Cannot parallelize, dilemma of trainability vs
expressivity

ConvS2S: Pros: Parallelize; Cons: Fixed and narrow receptive field

Transformer: Pros: Extended receptive fields of features from entire
sequence, strict computation sequence, final output normalized to prevent
blow up; Cons: Lack a memory component



Overview
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[3] Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey, W., Foster, G., ... & Wu, Y. (2018). The Best of Both Worlds: Combining Recent Advances in Neural
Machine Translation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)



Hybrid NMT model

Assessing Individual Encoders and Decoders

Encoder Decoder | En—Fr Test BLEU
Trans. Big | Trans. Big 40.73 H0.19
RNMT+ | RNMT+ 41.00 % 0.05
Trans. Big | RNMT+ 41.12 £ 0.16
RNMT+ | Trans. Big 39.92 +0.21
Assessing Encoder Combinations G
Decoder Decoce
Model En—Fr BLEU | En—De BLEU o,

Trans. Big | 40.73+£0.19 | 27.94 +0.18 N Tansiormer| | ANNITs
RNMT+ | 41.00+0.05 | 28.49 +0.05 |
Cascaded | 41.67 £0.11 | 28.62 + 0.06 P
MultiCol | 41.66+0.11 | 28.84 +0.06 oo s B il

(a) Cascaded Encoder (b) Multi-Column Encoder

[3] Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey, W., Foster, G., ... & Wu, Y. (2018). The Best of Both Worlds: Combining Recent Advances in Neural
Machine Translation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
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