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Motivation: Augmenting Human Innovation

e Millions of scientific papers are published every year
® More than 1M papers are added to PubMed every year, bringing the total
number of papers to over 36M

MEDLINE® Citation Counts by Year of
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Motivation: Augmenting Human Innovation

e Human'’s reading ability keeps almost the same across years

® US scientists estimated that they read, on average, only about 300 papers per
year

LESS TIME TO READ?

US faculty reported reading fewer scholarly articles in 2012 than
in 2005, countering a 35-year trend.
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Why do we want Al-Assisted Hypothesis Generation?

e “Sleeping beauties” in science: Discoveries that lay dormant and largely
unnoticed for long periods of time before suddenly attracting great
attention
O Examples include a now famous 1935 paper by Einstein, Podolsky, and Rosen on quantum
mechanics; a 1936 paper by Wenzel on waterproofing materials; and a 1958 paper by
Rosenblatt on artificial neural networks
¢
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Why do we want Al-Assisted Hypothesis Generation?

e “Sleeping beauties” in science: Discoveries that lay dormant and largely
unnoticed for long periods of time before suddenly attracting great

attention

O A systematic analysis of nearly 25 million publications in the natural and social sciences
over the past 100 years found that sleeping beauties occur in all fields of study
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Why do we want Al-Assisted Hypothesis Generation?

® Most papers build on existing knowledge to formulate new innovations

o Foster et al. (2015) shows that more than 60% of 6.4 million papers in biomedicine and chemistry
published between 1934 and 2008 report findings that build on existing knowledge and provide
additional innovations and improvements
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Background: Scientific Knowledge Discovery

® Literature-based Discovery

O Predict missing links in KG (e.g., drug—disease)

O Can lead to important discoveries

But

O Limited to curated entities and relations

O Limited to certain domains

O Cannot model nuanced contexts

o (e.g., target application settings,

requirements and constraints, motivations
and challenges)
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Contextualized Literature-based Discovery
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Dataset Construction

® Construct a corpus from 67,408 ACL Anthology papers from 1952 to
2022 with 5,946 papers from 2021, and 2,588 papers from 2022
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Dataset Construction

" Entity o
® Given a paper in the previous dataset, we "
perform the following steps to build a
knowledge graph:
® Named Entity Recognition (PLMarker)
® Relation Extraction (PLMarker) T e e o
® Coreference (SciCo) Relation
® Abbreviation Extraction (ScispaCy)
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Dataset Construction

® Perform scientific sentence classification to classify sentences from
the abstract into five categories including Background, Method,
Objective, Other, and Result

® Select sentences with labels of Background and Other as background context
® Focus on used-for relations, which usually include tasks and methods

... This requires plm§ to integrate the information from Split Forward Backward Total
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Quality of IE Preprocessing

e Keep high-confidence outputs from IE models to reduce errors
® Perform manual quality evaluation for each preprocessing stage

O Overall pass rate after all steps are applied is 79.7%

PL-Maker PL-Maker SciCo Scispacy Sentence
Stage ore Used-for Abbreviation . .
Entities . Coreference . Classification
Relations Detection
Precision 91.3% 65.4% 97.2% 100% 100%
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Gold Test Subset Annotation

M

Exclude instances with trivial overlap between ground truth and

background

Remove cases with irrelevant background
Retain only instances where the target relation (from which the seed term is
taken) is salient to the target sentence

input context entity output relation
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context contains
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with the generic, where context is
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We propose a novel approach to
formulate , extract , encode and inject
hierarchical structure information
explicitly into an extractive
summarization model based on a pre -
trained , encoder - only Transformer
language model ( HiStruct+ model ) ,
which improves SOTA ROUGEs for
extractive summarization on PubMed
and arXiv substantially .
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SciMON Overview

Problem/Motivation:
... streaming data of
various sources may
continuously grow ...
requires plms to integrate
the information from all
the sources in a lifelong
manner... pre-training on
all existing data, such a
process is expensive.
Seed Term:
knowledge acquisition
Input:
Background
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Initial Idea

..continual learning for knowledge acquisition...”
This approach is more efficient than exhaustive
pre-training on all existing data...

Retrieved Similar Ideas LRetrievaI from Literature Papers
1. Continual learning (CL) aims to enable
information systems to learn from a -
continuous data stream across time... Q|

1st Novelty Iteration

...a method that combines continual learning with

a dynamic knowledge distillation approach for

efficient knowledge acquisition ...

Novelty Threshold Check
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W

1. Different from previous knowledge distillation
methods ... student model learns from teacher
model for incremental knowledge extraction ...

Novelty Threshold Check
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Final Idea

... a method that leverages memory-augmented
neural networks for knowledge acquisition in a
lifelong learning scenario...
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Inspiration Retrieval

e Can we leverage external knowledge graphs, such as citation information,
to boost idea generation?
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Iterative Novelty Boosting

7z 7z

e We boost novelty iteratively
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Context ~ Generation Idea by
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Human Evaluation

e Comparing Outputs across Model
Variants

Helpfulness

o Evaluate the generated hypothesis by 80

considering each output’s relevance to the 70

context, novelty, clarity, and whether the ideais 60

reasonable 50
o GPT4FS and GPT4FS+KG outperform other gg

models by a wide margin 20
o GPT4 outputs tended to be longer, which may 10 I I

o

partially explain higher human preference
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Human Evaluation

e Comparisons to Real Papers
o The results are ranked according to the level of technical detail and
innovation in comparison to each other and ground truth
o 48% GPT4FS+KG shows higher technical detail
o 45% GPT4FS+KG is more novel
o Original ground truth ideas have significantly higher technical level and
novelty in 85% of comparisons
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Human Evaluation: Iterative Novelty Boosting

Compare the novelty-enhanced results against the previous generated ideas
Examine the new terms added after filtering stopwords and generic words

Ideas after novelty iterations are longer than initial ideas

For ideas not considered more novel after applying our method, we do not observe a
drop in novelty: the method either increases or maintains novelty

Type GPT4FS +SN +CT +KG
1st Novelty A (%) +54.4 +55.6 +47.8 +46.7
2nd Novelty A (%) - +57.8 - -

1st new terms A +23.1 +22.8 +22.1 +21.9

¢ 2nd new terms A - o1. - -
I N b 2 K12



Qualitative Analysis

Input seed term: speech unit boundaries ; context (abridged): ... generate partial sentence translation
given a streaming speech input. existing approaches ... break the acoustic units in speech, as
boundaries between acoustic units in speech are not even...

Initial Idea A pause prediction model to identify speech unit boundaries ...

Iteration 1 A method that leverages acoustic and linguistic features to predict speech unit boundaries
dynamically, ensuring smooth transitions ... differs from the existing research as it combines both
acoustic properties and linguistic context ... adapting to variations in speaker characteristics,
speaking styles, and languages.

Iteration 2 A novel method called Adaptive Speech Unit Boundary Detection (ASUBD) ... a combination of
attention mechanisms to focus on relevant acoustic and linguistic features and reinforcement
learning to guide the system to make optimal predictions of unit boundaries based on previous

decisions...
Ground ... an efficient monotonic segmentation module ... accumulate acoustic information incrementally
Truth and detect proper speech unit boundaries.

K —i2
Dong, Q., Zhu, Y., Wang, M., & Li, L. (2021). Learning when to translate for streaming speech. ACL 2022.



Case Study: Biomedical

e Collect a dataset from PubMed papers from 1988 to 2024 and construct a
biomedical dataset, including 4,767 papers before 2023/02, 642 papers
from 2023/02 to 2023/08, and 299 papers after 2023/08

o PubTator 3 for named entity recognition, relation extraction, entity coreference and linking,
and entity normalization

Type Meditron +SN +CT +KG
Helpful (%) 35 80 60 50
vs. GT (%) 30 45 50 35

¢ https://www.ncbi.nlm.nih.gov/research/pubtator3/
Chen, Z., Cano, A. H., Romanou, A., Bonnet, A., Matoba, K., Salvi, F., ... & Bosselut, A. (2023). Meditron-70b: Scaling medical pretraining for 23 A' Z
large language models. arXiv preprint arXiv:2311.16079.
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Case Study: Biomedical

Input seed term: ARO10; context (abridged): Huangjiu is known for its unique aroma, primarily attributed
to its high concentration of b-phenylethanol (ranging from 40 to 130 mg/L).

Meditron We then selected six key genes involved in the phenylalanine metabolism pathway and predicted that
their product flux may affect the synthesis of b-phenylethanol.

+ CT We found that the key amino acid residue that controls the activity of Aro10p was not conserved in
wine yeast strains, which may explain the lower b-phenylethanol production in wine fermentation
compared with that in Chinese huangjiu.

+ KG Both target genes, SSA1 and ARO10, were deleted using the CRISPR-Cas9 genome editing system.

+ SN Herein, we report that the key barrier for b-phenylethanol production in Huangjiu is ARO10, the only
bi-functional amino acid decarboxylase in Saccharomyces cerevisiae.

¢
I% Chen, Z., Cano, A. H., Romanou, A., Bonnet, A., Matoba, K., Salvi, F., ... & Bosselut, A. (2023). Meditron-70b: Scaling medical pretraining for 24 A'Z

large language models. arXiv preprint arXiv:2311.16079.



Conclusion

® Propose the first contextualized literature discovery task in which model
input background contexts (e.g., problems, experimental settings, goals),
and output natural language ideas grounded in literature

® Propose a novel approach that uses retrieval of inspirations from past
scientific papers, and explicitly optimizes for novelty by iteratively
comparing to prior papers and updating idea suggestions until sufficient
novelty is achieved

® Design extensive evaluation experiments using human annotators with
domain expertise to assess relevance, utility, novelty, and technical depth

https://github.com/EagleW/Scientific-Inspiration-
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Thank you!

.r- Code and Data are public at:
https://github.com/EagleW/Scientific-lnspiration-
St Machines-Optimized-for-Novelty 26 A|2
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