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Motivation: Augmenting Human Innovation

e Millions of scientific papers are published every year
® Human’s reading ability keeps almost the same across years

LESS TIME TO READ?

MEDLINE® Citation Counts by Year of U culty reported reading fewer scholaly ariles n 2012 than
Publication
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Background: Scientific Knowledge Discovery

® Literature-based Discovery
O Limited to curated entities and relations
O Limited to certain domains
O Cannot model nuanced contexts
® |LMs for Scientific Innovation
O Limited to code generation/experiment planning
O Focusing on anecdotal evaluation
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Contextualized Literature-based Discovery
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Dataset Construction

® Construct a corpus from 67,408 ACL
Anthology papers from 1952 to 2022  spiit Forward Backward Total
with 5,946 papers from 2021, and

Train 55,884 58,426 114,310
2,588 papers from 202.2 | Valid 038 5.257 16105
® Focus on used-for relations, which
Test 2,623 2,686 5,309

usually include tasks and methods

... This requires plms to integrate the information from
all the sources in a lifelong manner...
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SciMON Overview

Problem/Motivation:
... streaming data of
various sources may
continuously grow ...
requires plms to integrate
the information from all
the sources in a lifelong
manner... pre-training on
all existing data, such a
process is expensive.
Seed Term:
knowledge acquisition
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Initial Idea

..continual learning for knowledge acquisition...”
This approach is more efficient than exhaustive
pre-training on all existing data...

Retrieved Similar Ideas l’Retrieval from Literature Papers
1. Continual learning (CL) aims to enable
information systems to learn from a -
continuous data stream across time... Q|

1st Novelty Iteration

...a method that combines continual learning with

a dynamic knowledge distillation approach for

efficient knowledge acquisition ...

Novelty Threshold Check

Retrieved Similar Ideas J'Retrieval from Literature Papers
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Inspiration Retrieval

4 lamol: language
modeling for ...

ELLE: Efficient Lifelong Pre-
training for Emerging Data
, don't stop pretraining:
adapt language ...

W

1. Different from previous knowledge distillation
methods ... student model learns from teacher
model for incremental knowledge extraction ...

Novelty Threshold Check
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Final Idea

... a method that leverages memory-augmented
neural networks for knowledge acquisition in a
lifelong learning scenario...
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Inspiration Retrieval
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Iterative Novelty Boosting
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Human Evaluation

e Comparing Outputs across Model Variants

o

o

o

Evaluate the generated hypothesis by considering each
output’s relevance to the context, novelty, clarity, and
whether the idea is reasonable

GPT4FS and GPT4FS+KG outperform other models by
a wide margin

GPT4 outputs tended to be longer, which may partially
explain higher human preference

e Comparisons to Real Papers

o

o

The results are ranked according to the level of
technical detail and innovation in comparison to each
other and ground truth

48% GPT4FS+KG shows higher technical detail

45% GPT4FS+KG is more novel

Original ground truth ideas have significantly higher
technical level and novelty in 85% of comparisons
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Human Evaluation: Iterative Novelty Boosting

Compare the novelty-enhanced results against the previous generated ideas
Examine the new terms added after filtering stopwords and generic words

Ideas after novelty iterations are longer than initial ideas

For ideas not considered more novel after applying our method, we do not observe a
drop in novelty: the method either increases or maintains novelty

Type GPT4FS +SN +CT +KG
1st Novelty A (%) +54.4 +55.6 +47.8 +46.7
2nd Novelty A (%) - +57.8 - -

1st new terms A +23.1 +22.8 +22.1 +21.9

¢ 2nd new terms A - o1. - -
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Qualitative Analysis

Input seed term: speech unit boundaries ; context (abridged): ... generate partial sentence translation
given a streaming speech input. existing approaches ... break the acoustic units in speech, as
boundaries between acoustic units in speech are not even...

Initial Idea A pause prediction model to identify speech unit boundaries ...

Iteration 1 A method that leverages acoustic and linguistic features to predict speech unit boundaries
dynamically, ensuring smooth transitions ... differs from the existing research as it combines both
acoustic properties and linguistic context ... adapting to variations in speaker characteristics,
speaking styles, and languages.

Iteration 2 A novel method called Adaptive Speech Unit Boundary Detection (ASUBD) ... a combination of
attention mechanisms to focus on relevant acoustic and linguistic features and reinforcement
learning to guide the system to make optimal predictions of unit boundaries based on previous

decisions...
Ground ... an efficient monotonic segmentation module ... accumulate acoustic information incrementally
Truth and detect proper speech unit boundaries.

LI
IJ : Dong, Q., Zhu, Y., Wang, M., & Li, L. (2021). Learning when to translate for streaming speech. ACL 2022. "' 2



Case Study: Biomedical

e Collect a dataset from PubMed papers from 1988 to 2024 and constructa
biomedical dataset, including 4,767 papers before 2023/02, 642 papers
from 2023/02 to 2023/08, and 299 papers after 2023/08

Type Meditron +SN +CT +KG
Helpful (%) 35 80 60 50
vs. GT (%) 30 45 50 35

¢
I% Chen, Z., Cano, A. H., Romanou, A., Bonnet, A., Matoba, K., Salvi, F., ... & Bosselut, A. (2023). Meditron-70b: Scaling medical pretraining for 12 A'Z

large language models. arXiv preprint arXiv:2311.16079.



Case Study: Biomedical

Input seed term: ARO10; context (abridged): Huangjiu is known for its unique aroma, primarily attributed
to its high concentration of b-phenylethanol (ranging from 40 to 130 mg/L).

Meditron We then selected six key genes involved in the phenylalanine metabolism pathway and predicted that
their product flux may affect the synthesis of b-phenylethanol.

+ CT We found that the key amino acid residue that controls the activity of Aro10p was not conserved in
wine yeast strains, which may explain the lower b-phenylethanol production in wine fermentation
compared with that in Chinese huangjiu.

+ KG Both target genes, SSA1 and ARO10, were deleted using the CRISPR-Cas9 genome editing system.

+ SN Herein, we report that the key barrier for b-phenylethanol production in Huangjiu is ARO10, the only
bi-functional amino acid decarboxylase in Saccharomyces cerevisiae.
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large language models. arXiv preprint arXiv:2311.16079.



Conclusion

® Propose the first contextualized literature discovery task in which model
input background contexts (e.g., problems, experimental settings, goals),
and output natural language ideas grounded in literature

® Propose a novel approach that uses retrieval of inspirations from past
scientific papers, and explicitly optimizes for novelty by iteratively
comparing to prior papers and updating idea suggestions until sufficient
novelty is achieved

® Design extensive evaluation experiments using human annotators with
domain expertise to assess relevance, utility, novelty, and technical depth
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Thank you!

.r- Code and Data are public at:
https://github.com/EagleW/Scientific-lnspiration-
St Machines-Optimized-for-Novelty 15 A|2
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